An Extension of Birkhoff–James Orthogonality Relations in Semi-Hilbertian Space Operators

نویسندگان

چکیده

Let $\mathbb{B}(\mathcal{H})$ denote the $C^{\ast}$-algebra of all bounded linear operators on a Hilbert space $\big(\mathcal{H}, \langle\cdot, \cdot\rangle\big)$. Given positive operator $A\in\B(\h)$, and number $\lambda\in [0,1]$, seminorm ${\|\cdot\|}_{(A,\lambda)}$ is defined set $\B_{A^{1/2}}(\h)$ in $\B(\h)$ having an $A^{1/2}$-adjoint. The combination sesquilinear form ${\langle \cdot, \cdot\rangle}_A$ its induced ${\|\cdot\|}_A$. A characterization Birkhoff--James orthogonality for with respect to discussed given. Moving $\lambda$ along interval $[0,1]$, wide spectrum seminorms are obtained, $A$-numerical radius $w_A(\cdot)$ at beginning (associated $\lambda=0$) $A$-operator ${\|\cdot\|}_A$ end $\lambda=1$). Moreover, if $A=I$ identity operator, classical norm numerical obtained. Therefore, results this paper significant extensions generalizations known area.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A characterization of orthogonality preserving operators

‎In this paper‎, ‎we characterize the class of orthogonality preserving operators on an infinite-dimensional Hilbert space $H$ as scalar multiples of unitary operators between $H$ and some closed subspaces of $H$‎. ‎We show that any circle (centered at the origin) is the spectrum of an orthogonality preserving operator‎. ‎Also‎, ‎we prove that every compact normal operator is a strongly orthogo...

متن کامل

Optimal Rectification of an Affine Structure from Hypothesized Orthogonality Relations

MAXIMUM LIKELIHOOD ESTIMATOR OF Drops out of computation of likelihood ratio. DISTRIBUTION OF CONSTRAINT Under normal errors the Euclidean inner product turns out to be practically normal with variance: CONSTRAINTS Five or more orthogonality relations in the form of the Euclidean inner product determine the absolute conic. Rectifying transformation is obtained by Cholesky decomposition. Active ...

متن کامل

On Certain Extension Properties for the Space of Compact Operators

Let Z be a fixed separable operator space, X ⊂ Y general separable operator spaces, and T : X → Z a completely bounded map. Z is said to have the Complete Separable Extension Property (CSEP) if every such map admits a completely bounded extension to Y ; the Mixed Separable Extension Property (MSEP) if every such T admits a bounded extension to Y . Finally, Z is said to have the Complete Separab...

متن کامل

Weak Banach-Saks property in the space of compact operators

For suitable Banach spaces $X$ and $Y$ with Schauder decompositions and‎ ‎a suitable closed subspace $mathcal{M}$ of some compact operator space from $X$ to $Y$‎, ‎it is shown that the strong Banach-Saks-ness of all evaluation‎ ‎operators on ${mathcal M}$ is a sufficient condition for the weak‎ ‎Banach-Saks property of ${mathcal M}$, where for each $xin X$ and $y^*in‎ ‎Y^*$‎, ‎the evaluation op...

متن کامل

An Extension of the Szász-Mirakjan Operators

The paper is devoted to defining a new class of linear and positive operators depending on a certain function φ These operators generalize the Szász-Mirakjan operators (case in which φ is the exponential function). Furthermore, conditions when these operators have properties of monotony and convexity are given.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mediterranean Journal of Mathematics

سال: 2022

ISSN: ['1660-5454', '1660-5446']

DOI: https://doi.org/10.1007/s00009-022-02127-x